Estimating Platform Market Power in Two-sided Markets with an Application to Magazine Advertising

Minjae Song

¹Simon Graduate School of Business University of Rochester

2011 FTC Micro Conference

In Two-sided Markets

- Two groups of agents interact through a platform.
- Each group cares about the presence of agents on the other side, and thus the decisions of agents on one side affect the utility of agents on the other side.
- Platforms account for these cross-group externalities in making strategic decisions (e.g. setting prices).

Examples

- Payment systems
 - Merchants and consumers interact through credit cards.
- Video game systems
 - Game developers and game players interact through video consoles.
- Advertising in newspapers/magazines/websites
 - Advertisers and readers interact through media platforms.

What I do in this paper

- My paper brings two important features of the two-sided market into a structural model.
 - Agents on each side care about the presence of agents on the other side.
 - Platforms charge two prices, one for each group.
- I focus on cases where platforms charge fixed membership fees.
- I consider two versions of the two-sided market.
 - Two-sided single homing: agents on both sides join one platform each.
 - Competitive bottleneck: agents on one side join one platform but agents on the other side join multiple platforms.

- I show how to estimate agents' demand (preferences) for platforms using data on (two) membership prices, the number of agents on platforms, and other platform attributes.
 - The presence of agents from the other side is an important platform attribute and this variable is an endogenous variable.
- Given demand estimates, one can recover platforms' costs of serving agents and measure their markups (market power).
 - Price elasticity does not have a closed form because of the so-called feedback loop effect.
 - There are two demand equations, one for each group, and both should be used simultaneously to recover the costs.

Literature

- Numerous theory papers on two-sided markets.
 - The most cited ones are Rochet and Tirole (*JEEA* 2003; *RAND* 2006) and Armstrong (*RAND* 2006).
 - My paper is closely related to Armstrong (2006).
- Relatively few empirical papers but the number is growing fast.
 - Rysman (RESTUDS 2004) on the Yellow Page market zero price for consumers.
 - Argentesi and Filistrucchi (JAE 2007) on the Italian newspaper market
 - consumers do not care about advertising.

Model 1: Two-sided single-homing

- Two groups of agents, groups A and B. Each group cares about the presence of the other group on platforms.
- There are J platforms competing to attract agents from both sides.
- If platform j attracts s_j^A and s_j^B portions of the two groups, agents' utilities are

$$\begin{array}{rcl} u^A_{ij} & = & \mu^A_j + \alpha^A s^B_j - \lambda^A p^A_j + \xi^A_j + \varepsilon^A_{ij} \\ u^B_{ij} & = & \mu^B_j + \alpha^B s^A_j - \lambda^B p^B_j + \xi^B_j + \varepsilon^B_{ij} \end{array}$$

• Consumers may choose the outside option of joining no platform and receive zero mean utilities and an idiosyncratic shock.

• Assuming ε_{ij} is distributed the type I extreme value, platform j's market shares are

$$S_{j}^{A}\left(\mathbf{p}^{A},\mathbf{s}^{B},\boldsymbol{\xi}^{A}|\Omega\right) = \frac{\exp\left(\mu_{j}^{A} + \alpha^{A}s_{j}^{B} - \lambda^{A}\rho_{j}^{A} + \boldsymbol{\xi}_{j}^{A}\right)}{1 + \sum_{m=1}^{J} \exp\left(\mu_{m}^{A} + \alpha^{A}s_{m}^{B} - \lambda^{A}\rho_{m}^{A} + \boldsymbol{\xi}_{m}^{A}\right)}$$

$$S_{j}^{B}\left(\mathbf{p}^{A},\mathbf{s}^{B},\boldsymbol{\xi}^{A}|\Omega\right) = \frac{\exp\left(\mu_{j}^{B} + \alpha^{B}s_{j}^{A} - \lambda^{B}\rho_{j}^{B} + \boldsymbol{\xi}_{j}^{B}\right)}{1 + \sum_{m=1}^{J} \exp\left(\mu_{m}^{B} + \alpha^{B}s_{m}^{A} - \lambda^{B}\rho_{m}^{B} + \boldsymbol{\xi}_{m}^{B}\right)}$$

Model 2: Competitive bottleneck

- In the competitive bottleneck model, while one group, say group A, deals with a single platform (single-homes), the other group, say group B, wishes to deal with multiple platforms (multi-homes).
- A good example is media advertising.
- For group A agents I use the same utility function used in the single-homing model except that I use the number of group B agents instead of the share.

- I follow Armstrong (2006) to model group B agents' membership decision. I assume that she makes a decision to join one platform independently from her decision to join another. She joins a platform as long as its net benefit is positive.
- Given the fixed membership fee, say p_j^B , a type- α_i^B agent will join platform j if

$$\alpha_i^B \omega_j n_j^A \ge p_j^B$$
.

• Suppose platforms only know the distribution of α_i^B . Since each group B agent is ex ante identical, a platform will charge a single price p_j^B and the number of group B agents joining platform j is determined by

$$S_{j}^{B}\left(\mathbf{p}^{B},\mathbf{s}^{A}|\Omega
ight)=\left(1-F\left(rac{p_{j}^{B}}{\omega_{j}n_{i}^{A}}| heta
ight)
ight)$$

Computing price elasticities

Because of the cross-group externalities

$$\frac{\partial \mathcal{S}_{j}^{A}\left(\mathbf{p}^{A},\mathbf{s}^{B},\boldsymbol{\xi}^{A}|\Omega\right)}{\partial \rho_{k}^{A}}\neq\frac{\partial \mathcal{S}_{j}^{A}}{\partial \rho_{k}^{A}}$$

- This makes elasticity computation an implicit function problem.
 Treating share equations as an implicit function, the elasticity can be computed using the Implicit Function Theorem.
- For example, in the competitive bottleneck model,

$$\begin{split} F_{j}^{A}\left(\mathbf{s},\mathbf{p}\right) & \equiv & \frac{\exp\left(\mu_{j}^{A}+\alpha^{A}s_{j}^{B}M^{B}-\lambda^{A}p_{j}^{A}+\xi_{j}^{A}\right)}{1+\sum_{m=1}^{J}\exp\left(\mu_{m}^{A}+\alpha^{A}s_{m}^{B}M^{B}-\lambda^{A}p_{m}^{A}+\xi_{m}^{A}\right)}-s_{j}^{A}=0 \\ F_{j}^{B}\left(\mathbf{s},\mathbf{p}\right) & \equiv & \left(1-G\left(\frac{p_{j}^{B}}{\omega_{j}s_{j}^{A}M^{A}}|\theta\right)\right)-s_{j}^{B}=0 \end{split}$$

for j=1,...,J. where **s** are endogenous variables and **p** are control variables.

Estimation: Two-sided Single-home Model

 With observed market shares treated as one of equilibria, I estimate the following system of equations

$$\begin{array}{lll} \log \left(\mathbf{s}_{j}^{A} \right) - \log \left(\mathbf{s}_{0}^{A} \right) & = & \mu_{j}^{A} + \alpha^{A} \mathbf{s}_{j}^{B} - \lambda^{A} p_{j}^{A} + \xi_{j}^{A} \\ \log \left(\mathbf{s}_{j}^{B} \right) - \log \left(\mathbf{s}_{0}^{B} \right) & = & \mu_{j}^{B} + \alpha^{B} \mathbf{s}_{j}^{A} - \lambda^{B} p_{j}^{B} + \xi_{j}^{B} \end{array}$$

$$j=1,...,J$$
. The model parameters are $\Omega=\left(\mu_{j}^{A},\mu_{j}^{B},\lambda^{A},\lambda^{B},\alpha^{A},\alpha^{B}
ight)$.

- The demand-side model can be consistently estimated by the GMM with IVs.
 - In addition to the price variable, the other group's share variable is also an endogenous variable.
 - This variables is correlated with $\left(\xi_{j}^{A},\xi_{j}^{B}\right)$ for all js because of the feedback loop.

Estimation: Competitive Bottleneck Model

• For group A agents we have the following equation to estimate

$$\log\left(\mathbf{s}_{j}^{A}\right)-\log\left(\mathbf{s}_{0}^{A}\right)=\mu_{j}^{A}+\alpha^{A}n_{j}^{B}-\lambda^{A}p_{j}^{A}+\xi_{j}^{A}$$

• For group B agents ω_j is recovered by inverting the second share equation with a given value of θ and data on $\left(n_j^B, n_j^A, p_j^B, M_B\right)$. Assuming that ω_j is a function of platforms' non-price characteristics, we have another equation to estimate

$$\omega_{jt} = f\left(\mathbf{x}_{jt}|\beta^B\right)$$
.

where ω_{jt} is computed by inverting

$$n_{jt}^{B} = \left(1 - F\left(\frac{p_{jt}^{B}}{\omega_{jt}n_{jt}^{A}}|\theta\right)\right)M_{B}$$

Recovering marginal costs and markup

• Demand estimates are used to recover platforms' costs using the profit maximization condition. Assuming the constant marginal cost, platform j's profit is

$$\pi_{j} = \left(p_{j}^{A} - c_{j}^{A}\right) s_{j}^{A} M_{A} + \left(p_{j}^{B} - c_{j}^{B}\right) s_{j}^{B} M_{B}$$

where M_A and M_B denote the total number of agents for each group respectively.

• The profit maximizing first order conditions are

$$\frac{\partial \pi_{j}}{\partial p_{j}^{A}} = s_{j}^{A} M_{A} + \left(p_{j}^{A} - c_{j}^{A}\right) \frac{\partial s_{j}^{A}}{\partial p_{j}^{A}} M_{A} + \left(p_{j}^{B} - c_{j}^{B}\right) \frac{\partial s_{j}^{B}}{\partial p_{j}^{A}} M_{B} = 0$$

$$\frac{\partial \pi_{j}}{\partial p_{j}^{B}} = s_{j}^{B} M_{B} + \left(p_{j}^{B} - c_{j}^{B}\right) \frac{\partial s_{j}^{B}}{\partial p_{j}^{B}} M_{B} + \left(p_{j}^{A} - c_{j}^{A}\right) \frac{\partial s_{j}^{A}}{\partial p_{j}^{B}} M_{A} = 0$$

- The two marginal costs should be searched simultaneously. This search process involves numerical computation of the own- and cross-price elasticities as derivatives of the implicit function for each set of trial values.
- Platform's markup from one group is a function of its markup from the other group.

Empirical application

- Advertising in magazines. Magazines serve readers on one side and advertisers on the other side.
- Panel data (1992 to 2010) on TV magazines in Germany.
- Quarterly information on copy prices, advertising rates, advertising pages, content pages, and circulation are collected from a non-profit public institution equivalent to the US Audit Bureau of Circulation.
- Finding IVs from different magazine segments (Kaiser and Song, IJIO 2009).

Data

- There are about 10 to 15 magazines in each quarter published by 5 to 7 publishers.
- Each copy is sold at around 1 Euro, while one page of advertising is sold at around 30,000 Euros.
- The average magazine sells about 1.5 million copies in each quarter, has about 1,000 content pages and about 250 advertising pages.
- The average magazine's revenue from selling copies is about 1.5 million Euros, while its advertising revenue is 7 million Euros.
- It is hard to argue that the copy price covers the publishing cost. 1
 Euro for an over 100 page magazine seems unreasonably low.
 However, the low copy price is not unreasonable in the two sided market.

Estimation results

Table 5: Demand Estimation Results

Variable		OLS	System IV	GMM
Readers	Constant	-7.250*	-5.604*	-5.111*
		(0.235)	(0.640)	(0.612)
	Copy Price	-0.017	-0.135*	-0.155*
		(0.012)	(0.033)	(0.032)
	Ads Page	0.116*	0.208*	0.204*
		(0.011)	(0.030)	(0.028)
	Content Page	0.062*	0.069*	0.060*
		(0.007)	(0.008)	(0.008)
Advertisers	Constant	0.623	0.748*	0.919*
		(0.167)	(0.239)	(0.230)
	Content Page	-0.102*	-0.102*	-0.110*
		(0.010)	(0.012)	(0.011)

Magazine (Platform) markup

Table 7: Magazine Market Power

			One-Sided		Two-Sided		
Markets		Cost	Markup	% Markup	Cost	Markup	% Markup
		mc	(p-mc)	$\left(p-mc\right)/p$	mc	(p-mc)	(p-mc)/p
Readers	Median	0.40	0.51	0.62	3.39	-2.39	-2.26
	Mean	0.29	0.79	0.78	4.23	-3.15	-2.58
	20% QU*	0.13	0.50	0.48	1.56	-5.48	-4.52
	80% QU	0.54	1.09	0.83	6.83	-0.74	-0.88
Advertisers	Median	2,761	13,733	0.73	3,061	13,580	0.72
	Mean	1,031	21,446	0.84	1,329	21,148	0.83
	20% QU	599	5,469	0.63	950	5,283	0.61
	80% QU	7,890	32,115	0.98	7,999	31,582	0.96

Merger Analysis

Table 8: Price Changes from the Single Magazine Onwership to the Monopoly

		On	One-Sided		Two-Sided	
		Single	Monopoly	Single	Monopoly	
Readers						
	Magazine 1	1.42	1.45	1.43	1.38	
	Magazine 2	0.99	1.04	0.99	1.05	
	Magazine 3	1.00	1.03	1.03	1.00	
	Magazine 4	0.70	0.72	0.73	0.70	
	Magazine 5	1.42	1.47	1.42	1.48	
	Magazine 6	1.41	1.47	1.41	1.49	
	Magazine 7	1.41	1.43	1.44	1.41	
	Magazine 8	1.00	1.03	1.05	0.98	
	Magazine 9	1.01	1.07	1.01	1.09	
	Magazine 10	1.27	1.38	1.27	1.41	

Summary

- My structural model has two key features of the two-sided market.
 - Both groups care about the presence of the other group, so the cross-group externalities are present on both sides.
 - Platforms set different prices for each group to maximize joint profits from both sides.
- The empirical results show that most magazines set copy prices below marginal costs to increase the reader basis and make profits from selling advertising space.
- When the advertising side is ignored, the same demand estimates imply high markups on the reader side.
- Counterfactual exercises show that platform mergers do not necessarily increase copy prices and, as a result, readers may not necessarily be worse off in more concentrated markets.